Precise Point Positioning Using Triple GNSS Constellations in Various Modes

نویسندگان

  • Akram Afifi
  • Ahmed El-Rabbany
چکیده

This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing Regional Precise Positioning Services Using the Legacy and Future GNSS Receivers

This paper presents an overview of technical solutions for regional area precise GNSS positioning services such as in Queensland. The research focuses on the technical and business issues that currently constrain GPS-based local area Real Time Kinematic (RTK) precise positioning services so as to operate in future across larger regional areas, and therefore support services in agriculture, mini...

متن کامل

Developing Regional Precise Positioning Services Using the Current and Future Gnss Receivers

This paper presents an overview of technical developments within the CRCSI-funded research on "Delivering Precise Positioning Services in Regional Areas" undertaken by the authors since mid-2007. The research aims to address the technical and business issues that currently constrain GPS-based local area RTK precise positioning services so as to operate in future across larger regional areas, an...

متن کامل

Performance of Precise Point Positioning using Current Triple-frequency GPS Measurements in Australia

GNSS Network Real-Time-Kinematic (NRTK) has become a common service for many precise positioning applications over the last two decades. However, NRTK cannot service or support user applications if they are outside the Continuously Operating Reference Stations (CORS) network coverage area, such as in the case of offshore surveying. In addition, NRTK requires a fairly dense network of CORS (typi...

متن کامل

New Adaptable All-in-One Strategy for Estimating Advanced Tropospheric Parameters and Using Real-Time Orbits and Clocks

We developed a new strategy for a synchronous generation of real-time (RT) and near real-time (NRT) tropospheric products. It exploits the precise point positioning method with Kalman filtering and backward smoothing, both supported by real-time orbit and clock products. The strategy can be optimized for the latency or the accuracy of NRT production. In terms of precision, it is comparable to t...

متن کامل

A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals

Fast and reliable ambiguity resolution (AR) has been a continuing challenge for real-time precise positioning based on dual-frequency Global Navigation Satellite Systems (GNSS) carrier phase observation. New GNSS systems (i.e., GPS modernization, BDS (BeiDou Navigation Satellite System), GLONASS (Global Navigation Satellite System), and Galileo) will provide multiple-frequency signals. The GNSS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016